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Lecture 16: October 28

Hodge classes. Today, I want to present a nice application of Schmid’s results to
the study of Hodge classes. Let me first recallt the definition.

Definition 16.1. Let HZ be a Z-Hodge structure of even weight 2k; this means
that HZ is a finitely generated Z-module, and

H = HZ ⊗Z C =
⊕

p+q=2k

Hp,q

is a Hodge structure of weight 2k with Hq,p = Hp,q. A Hodge class is a class v ∈ HZ
whose image lies in Hk,k.

Note. Equivalently, a class v ∈ HZ is a Hodge class iff its image in H = HZ ⊗Z C
lies in the subspace

F kH =
⊕

p≥k
Hp,2k−p.

The reason is that v is real, and so its Hodge decomposition

v =
∑

p+q=2k

vp,q

has the property that vq,p = vp,q. Now v ∈ F kH means that vp,q = 0 for p ≤ k− 1,
and therefore also for p ≥ k + 1. But then v ∈ Hk,k, and so v is a Hodge class.

Note. We can always reduce to the case k = 0 by considering the Tate twist HZ(k).
The underlying Z-module is HZ ⊗Z Z(k), where Z(k) = (2πi)kZ ⊆ C. The Hodge
structure H(k) has weight 2k − 2k = 0, and H(k)0,0 = Hk,k, so Hodge classes of
type (k, k) in HZ are the same thing as Hodge classes of type (0, 0) in HZ(k).

Hodge classes are interesting because of their relation with algebraic cycles. If
X is a smooth projective variety (or a compact Kähler manifold), and Z ⊆ X
an algebraic (or analytic) subvariety of codimension k, then the cycle class [Z] ∈
H2k(X,Z) is a Hodge class. The Hodge conjecture predicts that on any smooth
projective variety, a nonzero multiple of every Hodge class is a linear combination
of cycle classes. (This is known to be false for compact Kähler manifolds in general.)

The Hodge conjecture also makes some suprising predictions for families of
smooth projective varieties. Let f : X → B be a projective morphism between
smooth algebraic varieties, with B say quasiprojective. Suppose we have a Hodge
class h ∈ H2k(Xb0 ,Z) in the fiber over a point b0 ∈ B. We can transport h to a
class in H2k(Xb,Z) over nearby points b ∈ B, and ask for which b ∈ B the resulting
class is again a Hodge class. It is not hard to see that the set of nearby points with
this property is (the germ of) an analytic subset of B. But if the Hodge conjecture
is true, then this set should actually be (the germ of) an algebraic subset of B.
Indeed, the condition for a given class to be a linear combination of cycle classes
of algebraic subvarieties in an algebraic condition on b, because subvarieties of the
fibers are parametrized by open subvarieties of certain Hilbert schemes, which are
algebraic varieties.

More generally, we can look at the set of pairs (b, h), where b ∈ B is a point, and
h ∈ H2k(Xb,Z) is a Hodge class on the fiber. This set is called the locus of Hodge
classes; it is again not hard to show that it has the structure of a complex space. If
the Hodge conjecture is true, then the locus of Hodge classes should be a countable
union of algebraic varieties. In a famous paper from the 1990’s, Cattani, Deligne,
and Kaplan proved that this is true, independently of the Hodge conjecture. Before
stating their result more precisely, let us first note the following finiteness property
of Hodge classes.
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Example 16.2. Let HZ be a Z-Hodge structure of weight 0, and suppose that the
Hodge structure on

H = HZ ⊗Z C =
⊕

p+q=0

Hp,q

is polarized by a hermitian pairing h : H ⊗C H → C. The Hodge norm of a Hodge
class v ∈ HZ equals h(v, v), and so for any K ≥ 0, the set

{
v ∈ HZ

∣∣ v is a Hodge class and h(v, v) ≤ K
}

is discrete and compact, hence finite. In other words, the set of Hodge classes of
bounded self-intersection number is always finite.

The result of Cattani, Deligne, and Kaplan works not just for families of smooth
projective varieties, but for any polarized variation of Z-Hodge structure of weight
0 over a smooth algebraic variety X. This means that V is a polarized variation
of Hodge structure of weight 0, with polarization h : V ⊗C V → C∞X , and VZ is a
local system of Z-modules such that V = VZ ⊗Z OX . Here is the statement of the
Cattani-Deligne-Kaplan theorem.

Theorem 16.3. Let X be a smooth quasi-projective algebraic variety, and V a
polarized variation of Z-Hodge structure of weight 0. For any K ≥ 0, consider
the set of pairs (x, v), where x ∈ X and v ∈ VZ,x is a Hodge class of type (0, 0)
with hx(v, v) ≤ K. Then this set is the set of points of a quasi-projective algebraic
variety, which is moreover finite and proper over X.

Following Cattani, Deligne, and Kaplan, we will call the set

Hdg(V ) =
{

(x, v)
∣∣ x ∈ X, and v ∈ VZ,x is a Hodge class of type (0, 0)

}

the locus of Hodge classes of the given variation of Hodge structure; according to
Theorem 16.3, it is a countable union of algebraic varieties. The subset

HdgK(V ) =
{

(x, v) ∈ Hdg(V )
∣∣ hx(v, v) ≤ K

}

is called the locus of Hodge classes of self-intersection number ≤ K; according to
Theorem 16.3, it consists of finitely many connected components of Hdg(V ), and
the projection HdgK(V )→ X is finite and proper.

Reduction to Schmid’s results. My goal is to explain the proof of Theorem 16.3
when dimX = 1, as an application of Schmid’s results. Let us first check that
Hdg(V ) is the set of points of a closed analytic subvariety of a complex manifold.
For simplicity, let me assume from now on that VZ is torsion-free. Consider the
étalé space of the local system,

Ét(VZ) =
{

(x, v)
∣∣ x ∈ X, and v ∈ VZ,x

}
,

which is the disjoint union of all the stalks, with the finest topology that makes every
section of VZ continuous. Since VZ is locally constant, Ét(VZ) is locally isomorphic
to a product, and therefore an infinite-sheeted covering space of X. In particular,
Ét(VZ) is again a complex manifold. Denote by V the holomorphic vector bundle
whose sheaf of sections in V , and by F pV the subbundle corresponding to the
subsheaf F pV . The morphism of sheaves VZ ↪→ V gives rise to an embedding

Ét(VZ) ↪→ V,

and the locus of Hodge classes is exactly the intersection Ét(VZ)∩F 0V. This shows
that Hdg(V ) is the set of points of an analytic subvariety of the complex manifold

Ét(VZ). Since the pairing h is flat, it is constant on every connected component of

Ét(VZ); therefore HdgK(V ) is a union of connected components of Hdg(V ), and
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therefore again an analytic subvariety. Example 16.2 shows that the projection
HdgK(V )→ X has finite fibers.

Here is the general idea for proving that HdgK(V ) is an algebraic variety. Choose
a projective compactification X̄ ⊇ X, and show that HdgK(V ) can be extended to
a complex space that is proper and finite over X̄. Since X̄ is projective, it follows
from Chow’s theorem that the extension is a projective algebraic variety; but then
HdgK(V ), being the preimage of X, must be quasi-projective. The extension is
constructed with the help of Schmid’s results, but the job becomes more manageable
after a few initial reductions. First, we know from Corollary 8.4 that the local
monodromy of VZ around each point of X̄ \X is quasi-unipotent. One can find a
finite covering space π : Y → X such that the pullback π∗VZ of the local system
has unipotent local monodromy at each point of Ȳ \ Y .

Example 16.4. One way to construct π : Y → X is by using the following fact: If all
eigenvalues of an integer matrix are roots of unity, and if the matrix is congruent
to the identity modulo some prime number p ≥ 3, then the matrix is actually
unipotent. So it suffices to take a finite covering space with the property that the
local system π∗VZ ⊗Z Z/pZ is trivial. Because of Corollary 8.4, this implies that
π∗VZ has unipotent local monodromy.

The finite covering space extends uniquely to a finite morphism π : Ȳ → X̄ be-
tween projective compactifications. If we can show that HdgK(π∗V ) is an algebraic
variety that is finite and proper over Y , then by composing with π, the same thing
is true for HdgK(V ) itself. After replacing V by π∗V , we can therefore assume
without loss of generality that the local monodromy of VZ around each point of
X̄ \X is unipotent.

Next, the problem of constructing an extension of HdgK(V ) is local near each
point of X̄ \ X. We therefore need to consider a polarized variation of Z-Hodge
structure on the punctured disk ∆∗, with unipotent local monodromy. As usual,
we denote by V the underlying vector bundle, by F pV the Hodge bundles, and by
h the polarization. Let V be the vector space of all flat sections of exp∗ V on the
halfspace H̃. We have V = VZ ⊗Z C, where VZ is the (free) Z-module of sections of
the local system exp∗ VZ. The monodromy transformation T ∈ End(VZ) is defined
over Z and unipotent. Therefore T = e2πiR, with R ∈ End(V ) nilpotent; in the

notation of Lecture 9, this means that RN = R and RS = 0. Let Ṽ be the canonical
extension for the interval [0, 1), with the distinguished trivialization

O∆ ⊗C V ∼= Ṽ

in which the connection is given by

∇(1⊗ v) =
dt

t
⊗Rv.

The vector bundle V is therefore trivial, with V ∼= ∆∗ × V . In this setting, the
étalé space Ét(VZ) has the following concrete description: it is the image of the
holomorphic mapping

H̃× VZ → ∆∗ × V, (z, v) 7→
(
ez, e−zRv

)
.

Let Φ: H̃ → D be the period mapping of the variation of Hodge structure, and
Ψ: ∆→ Ď be the holomorphic mapping from Theorem 9.1; here Ψ(ez) = e−zRΦ(z).
At each point t ∈ ∆∗, the fiber of the Hodge bundle F pV is then F pΨ(t), in the above

trivialization.
What do Hodge classes look like in this setting? By construction, a pair (t, w)

belongs to Ét(VZ) if t = ez and w = e−zRv for some z ∈ H̃ and some v ∈ VZ; the pair
is a Hodge class if w ∈ F 0

Ψ(t). The latter is of course equivalent to v ∈ F 0
Φ(z). The
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Hodge norm of such a class is h(v, v), and so the condition for (t, w) ∈ HdgK(V )
is that h(v, v) ≤ K. Our goal is to construct an extension of HdgK(V ) that is
finite and proper over ∆. We therefore need to understand the possible limits of
sequences of Hodge classes. The precise technical result that we are going to prove
is the following.

Proposition 16.5. With notation as above, suppose that zn ∈ H̃ is a sequence of
points with bounded imaginary parts, such that tn = ezn → 0. Also suppose that
vn ∈ VZ is a sequence of integral classes with h(vn, vn) ≤ K, such that vn ∈ F 0

Φ(zn)

for every n ∈ N. Then after passing to a subsequence, vn is constant, and the
constant value belongs to F 0

Ψ(0) ∩ kerR.

We are going to construct the desired extension of HdgK(V ) after proving this
technical result. The main ingredient is Theorem 10.2 and Theorem 10.3.

Proof of the technical result. I am going to divide the proof into four steps.

Step 1. We use the bound on the self-intersection to deduce that vn ∈ W0. Here
W• is the monodromy weight filtration of the nilpotent operator R ∈ End(V ). In
our setting, the monodromy weight filtration is actually defined over Q, because

2πiR = log T =

∞∑

`=1

(−1)`−1

`!
(T − id)`

is an endomorphism of VZ ⊗Z Q. As in Lecture 9, we choose a semisimple endo-
morphism H ∈ End(V ) with [H,R] = −2R, such that Wj = Ej(H)⊕Wj−1 for all
j ∈ Z. Recall from Theorem 10.2 that

F̂ = lim
t→0

e
1
2 logL(t)HFΨ(t)

exists, and that e−
1
2RF̂ is the Hodge filtration of a polarized Hodge structure of

weight 0. Define the sequence of operators

gn = e
1
2 logL(tn)H ∈ GR.

Note that each gn is an endomorphism of VR = VZ ⊗Z R. The operator gn acts on
the eigenspace E`(H) as multiplication by L(tn)`/2. Since the imaginary parts of
zn are bounded, we have (by Exercise 10.1)

e−
1
2RF̂ = lim

n→∞
e

1
2 logL(tn)He

1
2 (zn−zn)RFΦ(zn) = lim

n→∞
gnFΦ(zn).

In terms of Hodge norms, the bound h(vn, vn) ≤ K means that

‖gnvn‖2gnΦ(zn) = ‖vn‖2Φ(zn) = h(vn, vn) ≤ K.
Because the Hodge norm at the point gnΦ(zn) converges to the Hodge norm for the

Hodge structure e
1
2RF̂ , we conclude (as in Lecture 11) that the sequence gnvn ∈ VR

is bounded. This implies that vn ∈W0 for all but finitely many values of n. Indeed,
suppose that, for some ` ≥ 1, we had vn ∈W` for infinitely many values of n. Since
gnvn is bounded, and since L(tn)` is going to infinity, it follows that the component
of vn in the eigenspace E`(H) must be going to zero. But

E`(H) ∼= W`/W`−1,

and since vn ∈ VZ, the projection of vn into W`/W`−1 takes values in a discrete set,
hence must be equal to zero after all. So after omitting finitely many terms from
the beginning of the sequence, we can assume that vn ∈W0. For the same reason,
the component of vn in E0(H) must then take values in a finite set, and so after
replacing vn by a subsequence, we can assume that (vn)0 ∈ E0(H) is constant.
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Step 2. Since vn ∈ W0, we have Rvn ∈ W−2. We now prove that actually
Rvn ∈ W−3. The boundedness of the sequence gnvn means that, after passing
to a subsequence, the limit

v = lim
n→∞

gnvn ∈ VR

exists. Of course, v ∈ W0, and since gn acts on E0(H) as the identity, the E0(H)-
component of v is equal to (vn)0 (which we already know to be constant). Since
vn ∈ F 0

Φ(zn), it is also clear that

v ∈ lim
n→∞

gnF
0
Φ(zn) = e−

1
2RF 0.

The following lemma, which you can think of as being a toy case of the general
result we are trying to prove, now gives us v ∈ E0(H) ∩ kerR.

Lemma 16.6. Suppose that VR has a polarized sl2(C)-Hodge structure of weight 0.

If a vector v ∈ VR belongs to W0(Y ) ∩ e− 1
2Y F 0, then Y v = Hv = 0 and v ∈ F 0.

Proof. Let me spell out the assumptions in detail, before giving the proof. First,
the complexification V = C ⊗R VR should have an action by sl2(C), such that
X and Y are purely imaginary, and H is real. Moreover, the hermitian pairing
h : V ⊗C V → C should be compatible with the sl2(C)-action. Second, there should
be a decreasing filtration F • on V , such that Y F p ⊆ F p−1 and HF p ⊆ F p−1 for
all p ∈ Z. Moreover, the filtration e−

1
2Y F should define an R-Hodge structure of

weight 0 on V , which is polarized by the pairing h. We know from Theorem 14.1
that V is actually a polarized Hodge-Lefschetz structure of central weight 0; in
particular, each eigenspace Ej(H) has a real Hodge structure of weight j, with
Hodge filtration F • ∩ Ej(H).

Now consider a vector v ∈ VR∩W0(Y )∩e− 1
2Y F 0. Write v = v0 +v−1 +v−2 + · · ·

for the decomposition into H-eigenspaces, with vj ∈ Ej(H); note that vj ∈ VR, due
to the fact that H is a real operator. Then

e
1
2Y v = v0 + v−1 +

(
v−2 +

1

2
Y v0

)
+ · · · ∈ F 0,

and since the filtration F is compatible with H, the individual summands belong
to F 0. Therefore v0 ∈ F 0, v−1 ∈ F 0, v−2 + 1

2Y v0 ∈ F 0, and so on. We can now
proceed step by step to show that Rv0 = 0 and vj = 0 for j ≤ −1.

(1) We know that v0 ∈ VR∩E0(H)∩F 0. As E0(H) has a real Hodge structure
of weight 0, it follows that v0 ∈ E0(H)0,0 is of type (0, 0).

(2) Similarly, v−1 ∈ VR ∩E−1(H)∩F 0, and because E−1(H) has a real Hodge
structure of weight −1, it follows that v−1 = 0.

(3) Since v0 ∈ E0(H)0,0, and since Y : E0(H) → E−2(H)(−1) is a morphism
of Hodge structures, we get Y v0 ∈ E−2(H)−1,−1. Therefore v−2 ∈ VR ∩
E−2(H) ∩ F−1, and because E−2(H) has a real Hodge structure of weight
−2, we get v−2 ∈ E−2(H)−1,−1. Now v−2 + 1

2Y0v0 has type (−1,−1) and

also lies in F 0, and so it must be zero. Because v−2 is real and Y v0 is
purely imaginary, it follows that v−2 = 0 and Y v0 = 0.

(4) Continuing in this way, one proves that vj = 0 for every j ≤ −3.

The conclusion is that v = v0 belongs to E0(H) ∩ kerR ∩ F 0. �

In our setting, the lemma tells us that v ∈ E0(H) and Rv = 0. Recall that
vn ∈ W0, and that the E0(H)-component is constant and satisfies (vn)0 = v.
Therefore R(vn)0 = Rv = 0, and therefore Rvn ∈W−3.
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Step 3. We can now prove that Rvn = 0 for all but finitely many n ∈ N. The
proof is by contradiction. Suppose that Rvn 6= 0 for infinitely many n ∈ N. Fix a
norm on the vector space V , and denote by un the unit vector in the direction of
gnRvn (which exists whenever Rvn 6= 0). After passing to a subsequence, we can
assume that u = limn→∞ un ∈ VR exists. Of course, u is again a unit vector; since
Rvn ∈ W−3, we also have u ∈ W−3. I claim that moreover u ∈ e− 1

2RF̂−1. Here is
the proof. From the fact that vn ∈ F 0

Φ(zn), we get

gnRvn ∈ gnRF 0
Φ(zn) ⊆ gnF−1

Φ(zn) = F−1
gnΦ(zn).

The subspaces on the right converge to e−
1
2RF̂−1, and so u ∈ e− 1

2RF̂−1 as desired.
But now u ∈ VR ∩ W−3 ∩ e−

1
2RF̂−1 implies, as in the proof of the lemma, that

u = 0, due to the fact that each eigenspace Ej(H) has a real Hodge structure of
weight j. This is a contradiction, and so we must have Rvn = 0 for all but finitely
many n ∈ N after all.

Exercise 16.1. Show that u ∈ VR ∩W−3 ∩ e−
1
2RF̂−1 implies u = 0. (Hint: Start by

proving that VR ∩ Ej(H) ∩ F̂−1 = 0 for every j ≤ −3.)
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